
… finishing Bayes’ (from last lecture)

1.  Bayes’ Theorem in terms of odds

1.1.  Definition: Bayes’ factor is P(B|A)

P(B|Ac)

It quantifies the empirical evidence provided by the data (B) in favor of A. If it is
> 1, it increases the odds of A. If < 1, it decreases the odds of A. The posterior odds
are the prior odds multiplied by this Bayes’ factor.

1.2.  Definition: odds(A) =
P(A)

P(Ac)

Using these two we can reexpress Bayes’ Theorem as:

P(A|B)

P(Ac|B)
=

P(A)

P(Ac)
⋅

P(B|A)

P(B|Ac)

I.e. we solve for LHS by multiplying the odds by Bayes’ factor.

Independence

2.  Definition: A and B are independent if any of the
following is true:

2.3.  Remark: If A and B are independent, P(A ∩ B) = P(A) × P(B).

This is an extension of the multiplication law and we can generalise to an arbitrary
number of events.

1. P(A|B) = P(A)

2. P(A|B) = P(A|Bc)

3. P(B|A) = P(B)

4. P(A ∩ B) = P(A) ⋅ P(B)

If any of those are true, they are all true.



2.4.  Remark: If P(A) > 0 and P(B) > 0, independent events cannot
be disjoint and disjoint events cannot be independent.

3.  Counter-argument to Bayes’
Suppose there have been 1000000 instances in which a miracle could have occurred

and no miracle occurred. Consider the sun rising tomorrow and a baby with uniform
prior on p.

By Bayes’, the chance of P (p > 1
1600000 |X = 0) ≈ 0.535. But if p > 1

1600000  the
probability that there is a real miracle in the next 1000000 trials is, by multiplication
rule, greater than 1 − (1 − 1

1600000 )
1
000000 ≈ 0.465—clearly absurd.

Random Variables
So far we have considered the probabilities for events, subsets of a sample space.

But sample spaces are often very complicated, e.g. HHTTHTHTTHHTTTT, so this is
unwieldy. We usually care more about specific numerical properties associated with an
outcome, e.g. # of tosses to get first heads. We call this a random variable.

Formally speaking, a random variable is a real-valued function on the sample space
Ω mapping elements of Ω, ω, to real numbers, i.e. Ω → R as ω → x = X(ω).

We have two types of random variables: discrete and continuous.

4.  Probability Mass Function
The PMF of a random variable X is a function p(x) that maps each possible value

xi to the corresponding probability P(X = xi). In particular, A PMF p(x) must satisfy
0 ≤ p(x) ≤ 1 and ∑x p(x) = 1.

4.5.  Bernoulli Distribution
A random variable that can only take two values, 0 and 1, with probabilities 1 − p

and p, respectively, is called a Bernoulli random variable. Its PMF is thus
p(1) = p, p(0) = 1 − p, and p(x) = 0, if x ≠ 0 or 1. Such a distribution is called
Bernoulli distribution with parameter p.

We use this for random trials having only two possible outcomes, e.g. coin flips,
whether a drug works, whether a subject answers yes or no.

4.6.  Binomial Distribution
Suppose n independent Bernoulli trials are to be performed, each of which results

in a success with probability p and a failure with probability 1 − p. We define X as the



number of successes obtained in the n trials. We say X has a binomial distribution
with parameters X ∼ Bin(n, p) with the PMF P(X = k) = (n

k
)pk(1 − p)n−k.

4.7.  Remark: the sum of i.i.d Bernoulli Random Variables is
Binomial

4.8.  Geometric Distribution
Suppose that a sequence of independent Bernoulli trials are performed, each with

probability of success p. Let X be the number of trials required to obtain the first
success. The PMF of x is p(k) = P(X = k) = (1 − p)k−1p for k ∈ {1, 2, 3, …}. If k ≥ 1

and P(X = 0) = 0, we denote as X ∼ eometric(p). We say that X has a geometric
distribution, since the PMF is a geometric sequence.

4.9.  Negative Binomial Distribution
Suppose that a sequence of independent Bernoulli trials are performed, each with

probability of success p. Let X be the number of trials required to obtain the th
success. For the event {X = k} to occur, the kth trial must be a success and the first
k − 1 trials can be − 1 successes and k −  failures in any order.

Thus, the negative binomial PMF is P(X = k) = (k−1
−1 )p(1 − p)k−, denoted as

X ∼ NB(, p).

4.10.  Relationship between Negative Binomial & Geometric
If X1, X2, … , X  are i.i.d. Geometric(p) random variables, then

X1 + X2 + + X ∼ B(, p). Conversely, let X1 be the number of trials needed to get the
first success, X2 be the number of additional trials needed to get the second success
after the first success, …, and X  be the number of additional trials needed to get the 
th success after the ( − 1)st success. Then X1, X2, … , X  are independent Geometric(p)

random variables.

(This follows quite easily.)

4.11.  Poisson Distribution
A random variable X has a Poisson distribution with parameter λ > 0 if its PMF is

P(X = k) = λk

k! e−λ, which we denote as X ∼ Poisson(λ). We can prove the Poisson
PMF sums to 1 using the Taylor series of eu = ∑∞

k=0
uk

k!  with u = λ.



4.12.  Law of Rare Events/Poisson Approximation
For a binomial distribution with huge n and tiny p such that np is moderate, the

Binomial(n, p) is approximately the Poisson(λ = np).


