... finishing Bayes’ (from last lecture)

1. Bayes’ Theorem in terms of odds

1.1. Definition: Bayes’ factor is —5((5@)

It quantifies the empirical evidence provided by the data (B) in favor of A. If it is
> 1, it increases the odds of A. If < 1, it decreases the odds of A. The posterior odds
are the prior odds multiplied by this Bayes’ factor.
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1.2, Definition: odds(A) AT

Using these two we can reexpress Bayes’ Theorem as:

P(A|B) _ P(4) P(Bl4)

P(A%[B)  P(A°) P(B|A%)

I.e. we solve for LHS by multiplying the odds by Bayes’ factor.
Independence

2. Definition: A and B are independent if any of the
following is true:

P(A|B) = P(A)
P(A|B) = P(A|B°)
P(B|A) = P(B)

P(ANB)=P(A)-P(B)
If any of those are true, they are all true.

2.3. Remark: If A and B are independent, P(A N B) = P(A) x P(B).

This is an extension of the multiplication law and we can generalise to an arbitrary
number of events.



2.4. Remark: If P(A) > 0 and P(B) > 0, independent events cannot
be disjoint and disjoint events cannot be independent.

3. Counter-argument to Bayes’

Suppose there have been 1000000 instances in which a miracle could have occurred
and no miracle occurred. Consider the sun rising tomorrow and a baby with uniform
prior on p.

By Bayes’, the chance of P (p > 1z5505|X = 0) ~ 0.535. But if p > Jeoboss the
probability that there is a real miracle in the next 1000000 trials is, by multiplication

rule, greater than 1 — (1 — 1000000 ~ 0.465—clearly absurd.
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Random Variables

So far we have considered the probabilities for events, subsets of a sample space.
But sample spaces are often very complicated, e.g. HHTTHTHTTHHTTTT, so this is
unwieldy. We usually care more about specific numerical properties associated with an
outcome, e.g. # of tosses to get first heads. We call this a random variable.

Formally speaking, a random variable is a real-valued function on the sample space
2 mapping elements of Q, w, to real numbers, i.e. ? - Rasw — z = X(w).

We have two types of random variables: discrete and continuous.

4. Probability Mass Function

The PMF of a random variable X is a function p(x) that maps each possible value
z; to the corresponding probability P(X = z;). In particular, A PMF p(z) must satisfy
0<p(zx)<land)  p(z) =1

4.5. Bernoulli Distribution

A random variable that can only take two values, 0 and 1, with probabilities 1 — p
and p, respectively, is called a Bernoulli random variable. Its PMF is thus
p(1) = p,p(0) =1 — p, and p(z) = 0, if  # 0 or 1. Such a distribution is called
Bernoulli distribution with parameter p.

We use this for random trials having only two possible outcomes, e.g. coin flips,
whether a drug works, whether a subject answers yes or no.

4.6. Binomial Distribution

Suppose n independent Bernoulli trials are to be performed, each of which results
in a success with probability p and a failure with probability 1 — p. We define X as the



number of successes obtained in the n trials. We say X has a binomial distribution
with parameters X ~ Bin(n,p) with the PMF P(X = k) = (})p*(1 — p)" *.

4.7. Remark: the sum ofi.i.d Bernoulli Random Variables is
Binomial

4.8. Geometric Distribution

Suppose that a sequence of independent Bernoulli trials are performed, each with
probability of success p. Let X be the number of trials required to obtain the first
success. The PMFof z is p(k) = P(X = k) = (1 —p)k!pfork € {1,2,3,.. . }. If k > 1
and P(X = 0) = 0, we denote as X ~ eometric(p). We say that X has a geometric
distribution, since the PMF is a geometric sequence.

4.9. Negative Binomial Distribution

Suppose that a sequence of independent Bernoulli trials are performed, each with
probability of success p. Let X be the number of trials required to obtain the th
success. For the event { X = k} to occur, the kth trial must be a success and the first
k — 1 trials can be — 1 successes and k — failures in any order.

Thus, the negative binomial PMF is P(X = k) = (*)p(1 — p)*~, denoted as
X ~ NB(,p).

4.10. Relationship between Negative Binomial & Geometric

If X1, X, ..., X arei.i.d. Geometric(p) random variables, then
X1+ X2+ + X ~ B(,p). Conversely, let X; be the number of trials needed to get the
first success, X be the number of additional trials needed to get the second success
after the first success, ..., and X be the number of additional trials needed to get the
th success after the ( — 1)st success. Then X, X, ..., X are independent Geometric(p)
random variables.

(This follows quite easily.)

4.11. Poisson Distribution

A random variable X has a Poisson distribution with parameter A > 0 if its PMF is
P(X =k) = ’,\g—fe’A, which we denote as X ~ Poisson(A). We can prove the Poisson
PMF sums to 1 using the Taylor series of e* = > 72, “Tf withu = A



4.12. Law of Rare Events/Poisson Approximation

For a binomial distribution with huge n and tiny p such that np is moderate, the
Binomial(n, p) is approximately the Poisson(\ = np).



